Mathematical Morphology
In mathematical morphology, the basic structure of an image is a complete lattice. Definition: Complete lattice A complete lattice is a set $K$ equipped with an order relation $\leq$ that satisfies: Reflexivity: $\forall x \in K$, $x \leq x$; Antisymmetry: $\forall x, y \in K$, $x \leq y$ and $y \leq x$ implies $x = y$; Transitivity: $\forall x, y, z \in K$, $x \leq y$ and $y \leq z$ implies $x \leq z$; $\forall x, y \in K$, the supremum and infimum of $x$ and $y$ exist and are denoted $x \lor y$ and $x \land y$ respectively....