$$ \newcommand{\st}{\text{ s.t. }} \newcommand{\and}{\text{ and }} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\liminf}{lim\,inf} \DeclareMathOperator*{\limsup}{lim\,sup} \DeclareMathOperator*{\dom}{dom} \DeclareMathOperator*{\epi}{epi} \newcommand{\<}{\langle} \newcommand{\>}{\rangle} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\O}{\mathcal{O}} \newcommand{\dist}{\text{dist}} \newcommand{\vec}[1]{\mathbf{#1}} \newcommand{\diag}{\mathrm{diag}} \newcommand{\d}{\mathrm{d}} \newcommand{\L}{\mathcal{L}} \newcommand{\H}{\mathcal{H}} \newcommand{\Tr}{\mathrm{\mathbf{Tr}}} \newcommand{\E}{\mathbb{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\indep}{\perp \!\!\! \perp} \newcommand{\KL}[2]{\mathrm{KL}(#1 \parallel #2)} \newcommand{\W}{\mathbf{W}} % Wasserstein distance \newcommand{\SW}{\mathbf{SW}} % Sliced-Wasserstein distance $$

Contrast

The perception of an image’s content changes little when an increasing function is applied to it. However, if the function is non-increasing, then the perception of the content changes completely. We are sensible to local rather than global changes of contrast. From now on, we are denoting $u \colon \Omega \to \mathbb{R}$ our image, where $\vert \Omega \vert = M \times N$ is a discrete rectangular grid. Also, we are assuming that $u$ takes discrete values $y_0 < \dots < y_{n - 1}$ (usually $0$ to $255$). ...

September 20, 2024 · 4 min

Image aquisition

The pinhole model The first very simple way to acquire images is with the pinhole model. Here, part of the light coming from the object passes through a small aperture $O$ and is projected onto the focal plane. We do this so that each point of the object is represented by a ray. Otherwise, the image would not be formed. The distance $f$ is called the focal length. Let’s suppose we have the following model to describe the pinhole: ...

September 16, 2024 · 3 min